NICHIA CORPORATION

SPECIFICATIONS FOR UV LED

NCSU275T
- Pb-free Reflow Soldering Application
- Built-in ESD Protection Device
- RoHS Compliant
SPECIFICATIONS

(1) Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Absolute Maximum Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Current</td>
<td>I_{F}</td>
<td>700</td>
<td>mA</td>
</tr>
<tr>
<td>Pulse Forward Current</td>
<td>I_{FP}</td>
<td>1000</td>
<td>mA</td>
</tr>
<tr>
<td>Allowable Reverse Current</td>
<td>I_{R}</td>
<td>85</td>
<td>mA</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_{D}</td>
<td>2.87</td>
<td>W</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_{opr}</td>
<td>-10~85</td>
<td>℃</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{stg}</td>
<td>-40~100</td>
<td>℃</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T_{J}</td>
<td>130</td>
<td>℃</td>
</tr>
</tbody>
</table>

* Absolute Maximum Ratings at $T_s=25°C$.
* I_{FP} conditions with pulse width ≤10ms and duty cycle ≤10%.

(2) Initial Electrical/Optical Characteristics

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Voltage</td>
<td>V_F</td>
<td>$I_F=500mA$</td>
<td>3.6</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Radiant Flux</td>
<td>Φ_e</td>
<td>$I_F=500mA$</td>
<td>350</td>
<td>-</td>
<td>mW</td>
</tr>
<tr>
<td>Peak Wavelength</td>
<td>λ_p</td>
<td>$I_F=500mA$</td>
<td>385</td>
<td>-</td>
<td>nm</td>
</tr>
<tr>
<td>Forward Voltage</td>
<td>V_F</td>
<td>$I_F=500mA$</td>
<td>3.6</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Radiant Flux</td>
<td>Φ_e</td>
<td>$I_F=500mA$</td>
<td>360</td>
<td>-</td>
<td>mW</td>
</tr>
<tr>
<td>Peak Wavelength</td>
<td>λ_p</td>
<td>$I_F=500mA$</td>
<td>395</td>
<td>-</td>
<td>nm</td>
</tr>
<tr>
<td>Forward Voltage</td>
<td>V_F</td>
<td>$I_F=500mA$</td>
<td>3.7</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Radiant Flux</td>
<td>Φ_e</td>
<td>$I_F=500mA$</td>
<td>370</td>
<td>-</td>
<td>mW</td>
</tr>
<tr>
<td>Peak Wavelength</td>
<td>λ_p</td>
<td>$I_F=500mA$</td>
<td>405</td>
<td>-</td>
<td>nm</td>
</tr>
<tr>
<td>Spectrum Half Width</td>
<td>$\Delta \lambda$</td>
<td>$I_F=500mA$</td>
<td>9.0</td>
<td>-</td>
<td>nm</td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>$R_{\theta JS}$</td>
<td>-</td>
<td>9.3</td>
<td>10.5</td>
<td>℃/W</td>
</tr>
</tbody>
</table>

* Characteristics at $T_s=25°C$.
* Radiant Flux value as per CIE 127:2007 standard.
* $R_{\theta JS}$ is the thermal resistance from the junction to the T_s measurement point.
* It is recommended to operate the LEDs at a current greater than 10% of the sorting current to stabilize the LED characteristics.
RANKS

<table>
<thead>
<tr>
<th>Item</th>
<th>Rank</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M2</td>
<td></td>
<td>3.9</td>
<td>4.1</td>
<td>V</td>
</tr>
<tr>
<td>Lk2</td>
<td></td>
<td>3.6</td>
<td>3.9</td>
<td>V</td>
</tr>
<tr>
<td>Lk1</td>
<td></td>
<td>3.3</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>Radiant Flux</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6</td>
<td></td>
<td>510</td>
<td>605</td>
<td>mW</td>
</tr>
<tr>
<td>P5</td>
<td></td>
<td>430</td>
<td>510</td>
<td>mW</td>
</tr>
<tr>
<td>P4</td>
<td></td>
<td>360</td>
<td>430</td>
<td>mW</td>
</tr>
<tr>
<td>P3</td>
<td></td>
<td>300</td>
<td>360</td>
<td>mW</td>
</tr>
<tr>
<td>Peak Wavelength</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U405</td>
<td></td>
<td>400</td>
<td>410</td>
<td>nm</td>
</tr>
<tr>
<td>U395</td>
<td></td>
<td>390</td>
<td>400</td>
<td>nm</td>
</tr>
<tr>
<td>U385</td>
<td></td>
<td>380</td>
<td>390</td>
<td>nm</td>
</tr>
</tbody>
</table>

* Ranking at T_s=25°C.
* Forward Voltage Tolerance: ±0.05V
* Radiant Flux Tolerance: ±6%
* Peak Wavelength Tolerance: ±3nm
* LEDs from the above ranks will be shipped.

The rank combination ratio per shipment will be decided by Nichia.

Radiant Flux Ranks by Peak Wavelength

<table>
<thead>
<tr>
<th>Ranking by Peak Wavelength</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
</tr>
</thead>
<tbody>
<tr>
<td>U385</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U395</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U405</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NICHIA STS-DA1-2578G <Cat.No.161031>
OUTLINE DIMENSIONS

* This product complies with RoHS Directive.
* The dimension(s) in parentheses are for reference purposes.

NCSU275
管理番号 No. STS-DA7-3363B

（単位 Unit: mm，公差 Tolerance: ±0.2）

<table>
<thead>
<tr>
<th>項目 Item</th>
<th>内容 Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>パッケージ材質 Package Materials</td>
<td>セラミックス Ceramics</td>
</tr>
<tr>
<td>封止樹脂材質 Encapsulating Resin Materials</td>
<td>シリコーン樹脂 Silicone Resin</td>
</tr>
<tr>
<td>電極材質 Electrodes Materials</td>
<td>金メッキ Au-plated</td>
</tr>
<tr>
<td>質量 Weight</td>
<td>0.037g(TYP)</td>
</tr>
</tbody>
</table>
SOLDERING

- **Recommended Reflow Soldering Condition (Lead-free Solder)**

 ![Soldering Temp Curve](image)

- **Recommended Soldering Pad Pattern**

 ![Soldering Pad Pattern](image)

* This LED is designed to be reflow soldered on to a PCB. If dip soldered or hand soldered, Nichia cannot guarantee its reliability.

* Reflow soldering must not be performed more than twice.

* Avoid rapid cooling. Ramp down the temperature gradually from the peak temperature.

* Nitrogen reflow soldering is recommended. Air flow soldering conditions can cause optical degradation, caused by heat and/or atmosphere.

* Since the silicone used in the encapsulating resin is soft, do not press on the encapsulant resin.
 Pressure can cause nicks, chip-outs, encapsulant delamination and deformation, and wire breaks, decreasing reliability.

* Repairing should not be done after the LEDs have been soldered.
 It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

* When soldering, do not apply stress to the LED while the LED is hot.

* When using a pick and place machine, choose an appropriate nozzle for this product. Using a pick-and-place nozzle with a smaller diameter than the size of the LED’s emitting surface will cause damage to the emitting surface and may also cause the LED not to illuminate.

* The recommended soldering pad pattern is designed for attachment of the LED without problems.
 When precise mounting accuracy is required, such as high-density mounting, ensure that the size and shape of the pad are suitable for the circuit design.

* When flux is used, it should be a halogen free flux. Ensure that the manufacturing process is not designed in a manner where the flux will come in contact with the LEDs.

* Make sure that there are no issues with the type and amount of solder that is being used.
NICHIA STS-DA1-2578G <Cat.No.161031>

TAPE AND REEL DIMENSIONS

テープ部分 Tape

トレーラ部/リーダ部 Trailer and Leader

リール部 Reel

* 数量は1リールにつき2000個入りです。
 Reel Size: 2000pcs

* JIS C 0806電子部品テープに準拠しています。
 The tape packing method complies with JIS C 0806 (Packaging of Electronic Components on Continuous Tapes).

* 実装作業の中断などでエンボスキャリアテープをリールに巻き取る場合、エンボスキャリアテープを強く(10N以上)締めないで下さい。
 LEDがカバーテープに貼り付く可能性があります。
 When the tape is rewound due to work interruptions, no more than 10N should be applied to the embossed carrier tape.
 The LEDs may stick to the top cover tape.
PACKAGING - TAPE & REEL

Silica gel is shipped with the reel in a heat-sealed moisture-proof bag. Reels are shipped with desiccants in heat-sealed moisture-proof bags.

![Diagram showing packaging components: silica gel, desiccants, reel, moisture-proof bag, corrugated partitions, and cardboard box.]

- Silica gel
- Desiccants
- Reel
- Seal
- Moisture-proof Bag
- Corrugated partitions
- Cardboard box

If not provided, it will not be indicated on the label.

Warning and Explanatory Labels

- UV LED
 - Type: Nxxxxxxx
 - Class: 3B

Rack Label

- RANK: 3R
- QTY: PCS

Class 3B LED Product

- Avoid exposure to beam

For details, see "LOT NUMBERING CODE" in this document.

This product is shipped with silica gel and desiccants in a heat-sealed moisture-proof bag. The box is not water-resistant.

If not provided, it will not be indicated on the label.

Class 3B LED Product avoids exposure to beam.

For details, see "LOT NUMBERING CODE" in this document.
LOT NUMBERING CODE

Lot Number is presented by using the following alphanumeric code.

YMxxxx - RRR

Y - Year

<table>
<thead>
<tr>
<th>Year</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>F</td>
</tr>
<tr>
<td>2016</td>
<td>G</td>
</tr>
<tr>
<td>2017</td>
<td>H</td>
</tr>
<tr>
<td>2018</td>
<td>I</td>
</tr>
<tr>
<td>2019</td>
<td>J</td>
</tr>
<tr>
<td>2020</td>
<td>K</td>
</tr>
</tbody>
</table>

M - Month

<table>
<thead>
<tr>
<th>Month</th>
<th>M</th>
<th>Month</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>11</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>12</td>
<td>C</td>
</tr>
</tbody>
</table>

xxxx-Nichia’s Product Number
RRR-Ranking by Wavelength, Ranking by Radiant Flux, Ranking by Forward Voltage
DERATING CHARACTERISTICS

周囲温度-許容順電流特性

Ambient Temperature vs Allowable Forward Current

カソード側はんだ接合部温度-許容順電流特性

Solder Temperature(Cathode Side) vs Allowable Forward Current

許容順電流

Allowable Forward Current(mA)

カソード側はんだ接合部温度

Solder Temperature(Cathode Side)(°C)

デューティー比-許容順電流特性

Duty Ratio vs Allowable Forward Current

デューティー比

Duty Ratio(%)
OPTICAL CHARACTERISTICS

本特性は参考です。
All characteristics shown are for reference only and are not guaranteed.

本特性はピーク波長ランクU385に対応しています。
The graphs above show the characteristics for U385 LEDs of this product.
OPTICAL CHARACTERISTICS

*本特性は参考です。
All characteristics shown are for reference only and are not guaranteed.

Spectrum

- **Wavelength (nm)**: 300, 350, 400, 450, 500, 550, 600
- **Relative Emission Intensity (a.u.)**: 0.0, 0.2, 0.4, 0.6, 0.8, 1.0

Directivity

- **Radiation Angle**: 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90°
- **Relative Radiant**: 1.0, 0.5, 0.0, 0.5, 1.0

* 本特性はピーク波長ランクU395に対応しています。
The graphs above show the characteristics for U395 LEDs of this product.
OPTICAL CHARACTERISTICS

* 本特性は参考です。
 All characteristics shown are for reference only and are not guaranteed.

- **発光スペクトル**
 - Spectrum
 - 相対放射強度
 - Relative Radiant Intensity
 - 波長
 - Wavelength (nm)

- **指向特性**
 - Directivity
 - 相対放射強度
 - Relative Radiant Intensity
 - 相対放射角度
 - Relative Radiation Angle

* 本特性はピーク波長ランクU405に対応しています。
 The graphs above show the characteristics for U405 LEDs of this product.
FORWARD CURRENT CHARACTERISTICS / TEMPERATURE CHARACTERISTICS

*本特性は参考です。
All characteristics shown are for reference only and are not guaranteed.

* 本特性はピーク波長ランクU385に対応しています。
The graphs above show the characteristics for U385 LEDs of this product.
FORWARD CURRENT CHARACTERISTICS / TEMPERATURE CHARACTERISTICS

* 本特性は参考です。
All characteristics shown are for reference only and are not guaranteed.

* 本特性はピーク波長ランクU395に対応しています。
The graphs above show the characteristics for U395 LEDs of this product.
FORWARD CURRENT CHARACTERISTICS / TEMPERATURE CHARACTERISTICS

* 本特性は参考です。All characteristics shown are for reference only and are not guaranteed.

For forward current and temperature characteristics:
- Forward Current vs Forward Voltage
- Ambient Temperature vs Forward Voltage
- Forward Current vs Relative Radiant Flux
- Ambient Temperature vs Relative Radiant Flux

The graphs above show the characteristics for U405 LEDs of this product.

* 本特性はピーク波長ランクU405に対応しています。The graphs above show the characteristics for U405 LEDs of this product.
FORWARD CURRENT CHARACTERISTICS / TEMPERATURE CHARACTERISTICS

*本特性は参考です。
All characteristics shown are for reference only and are not guaranteed.

順電流-ピーク波長特性
Forward Current vs Peak Wavelength

周囲温度-ピーク波長特性
Ambient Temperature vs Peak Wavelength

*本特性はピーク波長ランクU385に対応しています。
The graphs above show the characteristics for U385 LEDs of this product.
*本特性は参考です。
All characteristics shown are for reference only and are not guaranteed.

The graphs above show the characteristics for U395 LEDs of this product.
* 本特性は参考です。
All characteristics shown are for reference only and are not guaranteed.

順電流-ピーク波長特性
Forward Current vs Peak Wavelength

周囲温度-ピーク波長特性
Ambient Temperature vs Peak Wavelength

* 本特性はピーク波長ランクU405に対応しています。
The graphs above show the characteristics for U405 LEDs of this product.
RELIABILITY

(1) Tests and Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Reference Standard</th>
<th>Test Conditions</th>
<th>Test Duration</th>
<th>Failure Criteria</th>
<th>Units Failed/Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance to Soldering Heat (Reflow Soldering)</td>
<td></td>
<td>$T_{slid}=260{\degree}C$, 10sec, 2reflows</td>
<td></td>
<td>#1</td>
<td>0/10</td>
</tr>
<tr>
<td>Temperature Cycle</td>
<td>JEITA ED-4701 100 105</td>
<td>-40°C(30min)~25°C(5min)~100°C(30min)~25°C(5min)</td>
<td>100cycles</td>
<td>#1</td>
<td>0/10</td>
</tr>
<tr>
<td>High Temperature Storage</td>
<td>JEITA ED-4701 200 201</td>
<td>$T_A=100{\degree}C$</td>
<td>1000hours</td>
<td>#1</td>
<td>0/10</td>
</tr>
<tr>
<td>Low Temperature Storage</td>
<td>JEITA ED-4701 200 202</td>
<td>$T_A=-40{\degree}C$</td>
<td>1000hours</td>
<td>#1</td>
<td>0/10</td>
</tr>
<tr>
<td>Room Temperature Operating Life Condition 1</td>
<td></td>
<td>$T_A=25{\degree}C$, $I_F=500mA$</td>
<td>1000hours</td>
<td>#1</td>
<td>0/10</td>
</tr>
<tr>
<td>Room Temperature Operating Life Condition 2</td>
<td></td>
<td>$T_A=25{\degree}C$, $I_F=700mA$</td>
<td>500hours</td>
<td>#1</td>
<td>0/10</td>
</tr>
<tr>
<td>High Temperature Operating Life</td>
<td></td>
<td>$T_A=85{\degree}C$, $I_F=300mA$</td>
<td>500hours</td>
<td>#1</td>
<td>0/10</td>
</tr>
<tr>
<td>Temperature Humidity Operating Life</td>
<td></td>
<td>$60{\degree}C$, RH=90%, $I_F=300mA$</td>
<td>500hours</td>
<td>#1</td>
<td>0/10</td>
</tr>
<tr>
<td>Low Temperature Operating Life</td>
<td></td>
<td>$T_A=-10{\degree}C$, $I_F=500mA$</td>
<td>1000hours</td>
<td>#1</td>
<td>0/10</td>
</tr>
<tr>
<td>Vibration</td>
<td>JEITA ED-4701 400 403</td>
<td>200m/s², 1002000100Hz, 4cycles, 4min, each X, Y, Z</td>
<td>48minutes</td>
<td>#1</td>
<td>0/10</td>
</tr>
<tr>
<td>Electrostatic Discharges</td>
<td>JEITA ED-4701 300 304</td>
<td>HBM, 2kV, 1.5kΩ, 100pF, 3pulses, alternately positive or negative</td>
<td></td>
<td>#1</td>
<td>0/10</td>
</tr>
</tbody>
</table>

NOTES:
1) $R_{\theta JA}\approx37{\degree}C/W$
2) Measurements are performed after allowing the LEDs to return to room temperature.

(2) Failure Criteria

<table>
<thead>
<tr>
<th>Criteria #</th>
<th>Items</th>
<th>Conditions</th>
<th>Failure Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Forward Voltage(V_F)</td>
<td>$I_F=500mA$</td>
<td>$>\text{Initial value} \times 1.1$</td>
</tr>
<tr>
<td></td>
<td>Radiant Flux(Φ_E)</td>
<td>$I_F=500mA$</td>
<td>$<\text{Initial value} \times 0.7$</td>
</tr>
</tbody>
</table>
CAUTIONS

(1) Storage

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage</td>
<td>≤30°C</td>
<td>≤90%RH</td>
<td>Within 1 Year from Delivery Date</td>
</tr>
<tr>
<td>Before Opening Aluminum Bag</td>
<td>≤30°C</td>
<td>≤90%RH</td>
<td>Within 1 Year from Delivery Date</td>
</tr>
<tr>
<td>After Opening Aluminum Bag</td>
<td>≤30°C</td>
<td>≤70%RH</td>
<td>≤168hours</td>
</tr>
<tr>
<td>Baking</td>
<td>65±5°C</td>
<td>-</td>
<td>≥24hours</td>
</tr>
</tbody>
</table>

- Product complies with JEDEC MSL 3 or equivalent. See IPC/JEDEC STD-020 for moisture-sensitivity details.
- Absorbed moisture in LED packages can vaporize and expand during soldering, which can cause interface delamination and result in optical performance degradation. Products are packed in moisture-proof aluminum bags to minimize moisture absorption during transportation and storage.
- Included silica gel desiccants change from blue to red if moisture had penetrated bags.
- After opening the moisture-proof aluminum bag, the products should go through the soldering process within the range of the conditions stated above. Unused remaining LEDs should be stored with silica gel desiccants in a hermetically sealed container, preferably the original moisture-proof bags for storage.
- After the “Period After Opening” storage time has been exceeded or silica gel desiccants are no longer blue, the products should be baked. Baking should only be done once.
- Although the leads or electrode pads (anode and cathode) of the product are plated with gold, prolonged exposure to a corrosive environment might cause the gold plated the leads or electrode pads to tarnish, and thus leading to difficulties in soldering. If unused LEDs remain, they must be stored in a hermetically sealed container. Nichia recommends using the original moisture-proof bag for storage.
- Do not use sulfur-containing materials in commercial products. Some materials, such as seals and adhesives, may contain sulfur. The contaminated plating of LEDs might cause an open circuit. Silicone rubber is recommended as a material for seals. Bear in mind, the use of silicones may lead to silicone contamination of electrical contacts inside the products, caused by low molecular weight volatile siloxane.
- To prevent water condensation, please avoid large temperature and humidity fluctuations for the storage conditions.
- Do not store the LEDs in a dusty environment.
- Do not expose the LEDs to direct sunlight and/or an environment where the temperature is higher than normal room temperature.

(2) Directions for Use

- When designing a circuit, the current through each LED must not exceed the Absolute Maximum Rating. Operating at a constant current per LED is recommended. In case of operating at a constant voltage, Circuit B is recommended. If the LEDs are operated with constant voltage using Circuit A, the current through the LEDs may vary due to the variation in Forward Voltage characteristics of the LEDs.

![Circuit Diagram](image)

- This product should be operated using forward current. Ensure that the product is not subjected to either forward or reverse voltage while it is not in use. In particular, subjecting it to continuous reverse voltage may cause migration, which may cause damage to the LED die. When used in displays that are not used for a long time, the main power supply should be switched off for safety.
- It is recommended to operate the LEDs at a current greater than 10% of the sorting current to stabilize the LED characteristics.
- Ensure that excessive voltages such as lightning surges are not applied to the LEDs.
- For outdoor use, necessary measures should be taken to prevent water, moisture and salt air damage.
- This product also emits visible light. If the LEDs are used as a light source in applications such as sensors, etc. take into consideration the emission that is in the visible light spectrum.
- If this product is stored and/or used constantly under high temperature and high humidity conditions, it may accelerate the deterioration of the die; this may cause the radiant flux to decrease.
- If the LEDs are stored and/or used under these conditions, sufficient verification must be done prior to use to ensure there are no issues for the chosen application.
(3) Handling Precautions

- Do not handle the LEDs with bare hands as it will contaminate the LED surface and may affect the optical characteristics: it might cause the LED to be deformed and/or the wire to break, which will cause the LED not to illuminate.
- This product uses encapsulating resin that is very soft. Direct contact with the surface of the resin may cause damage to the resin; the application of force on the resin may cause the wire to break and/or cause the LED not to illuminate. When handling the LEDs with tweezers, make sure to avoid direct contact with the resin and that excessive force is not applied to the LEDs.
- Dropping the product may cause damage.
- Do not stack assembled PCBs together. Failure to comply can cause the resin portion of the product to be cut, chipped, delaminated and/or deformed. It may cause wire to break, leading to catastrophic failures.

(4) Design Consideration

- PCB warpage after mounting the products onto a PCB can cause the package to break. The LED should be placed in a way to minimize the stress on the LEDs due to PCB bow and twist.
- The position and orientation of the LEDs affect how much mechanical stress is exerted on the LEDs placed near the score lines. The LED should be placed in a way to minimize the stress on the LEDs due to board flexing.
- Board separation must be performed using special jigs, not using hands.
- If an aluminum PCB is used, customer is advised to verify the PCB with the products before use. Thermal stress during use can cause the solder joints to crack.
- Part of the surface of the encapsulating resin may appear frosted or cloudy during use. This is the area where the material properties have changed due to the ultra-violet light. The appearance of the cloudy spots will not cause an adverse effect on the electrical/optical characteristics. However, ensure that there are no issues for the chosen application prior to use.
- When substances commonly found in ink adhere to the resin of this product, it may reduce the radiant flux and may change the material properties. Materials, such as dustproof glass, should be used to protect the LEDs.

(5) Electrostatic Discharge (ESD)

- The products are sensitive to static electricity or surge voltage. ESD can damage a die and its reliability. When handling the products, the following measures against electrostatic discharge are strongly recommended:
 - Eliminating the charge
 - Grounded wrist strap, ESD footwear, clothes, and floors
 - Grounded workstation equipment and tools
 - ESD table/shelf mat made of conductive materials
 - Ensure that tools, jigs and machines that are being used are properly grounded and that proper grounding techniques are used in work areas. For devices/equipment that mount the LEDs, protection against surge voltages should also be used.
 - If tools or equipment contain insulating materials such as glass or plastic, the following measures against electrostatic discharge are strongly recommended:
 - Dissipating static charge with conductive materials
 - Preventing charge generation with moisture
 - Neutralizing the charge with ionizers
 - The customer is advised to check if the LEDs are damaged by ESD when performing the characteristics inspection of the LEDs in the application. Damage can be detected with a forward voltage measurement at low current (≤1mA).
 - ESD damaged LEDs may have current flow at a low voltage.
 - Failure Criteria: \(V_f < 2.0V \) at \(I_f = 0.5mA \)
(6) Thermal Management

- Proper thermal management is an important when designing products with LEDs. LED die temperature is affected by PCB thermal resistance and LED spacing on the board. Please design products in a way that the LED die temperature does not exceed the maximum Junction Temperature (T_J).
- Drive current should be determined for the surrounding ambient temperature (T_A) to dissipate the heat from the product.
- The following equations can be used to calculate the junction temperature of the products.

\[
\begin{align*}
1) T_J &= T_A + R_{\theta JA} \times W \\
2) T_J &= T_S + R_{\theta JS} \times W
\end{align*}
\]

*T$_J$=LED junction temperature: °C
T$_A$=Ambient temperature: °C
T$_S$=Soldering temperature (cathode side): °C
R$_{\theta JA}$=Thermal resistance from junction to ambient: °C/W
R$_{\theta JS}$=Thermal resistance from junction to T$_S$ measurement point: °C/W
W=Input power (I$_F$×V$_F$): W

(7) Cleaning

- The LEDs should not be cleaned with water, benzine, and/or thinner.
- If required, isopropyl alcohol (IPA) should be used. Other solvents may cause premature failure to the LEDs due to the damage to the resin portion. The effects of such solvents should be verified prior to use.
 In addition, the use of CFCs such as Freon is heavily regulated.
- When dust and/or dirt adheres to the LEDs, soak a cloth with Isopropyl alcohol (IPA), then squeeze it before wiping the LEDs.
- Ultrasonic cleaning is not recommended since it may have adverse effects on the LEDs depending on the ultrasonic power and how LED is assembled.
 If ultrasonic cleaning must be used, the customer is advised to make sure the LEDs will not be damaged prior to cleaning.

(8) Eye Safety

- In 2006, the International Electrical Commission (IEC) published IEC 62471:2006 Photobiological safety of lamps and lamp systems, which added LEDs in its scope.
 On the other hand, the IEC 60825-1:2007 laser safety standard removed LEDs from its scope.
 However, please be advised that some countries and regions have adopted standards based on the IEC laser safety standard IEC 60825-1:20112001, which still includes LEDs in its scope.
 Most of Nichia’s LEDs can be classified as belonging into either the Exempt Group or Risk Group 1.
 High-power LEDs, that emit light containing blue wavelengths, may be classified as Risk Group 2.
 Please proceed with caution when viewing directly any LEDs driven at high current, or viewing LEDs with optical instruments which may greatly increase the damages to your eyes.
- Viewing a flashing light may cause eye discomfort. When incorporating the LED into your product, please be careful to avoid adverse effects on the human body caused by light stimulation.
- The products are UV light LEDs, and radiate intense UV light during operation. Since UV light can be harmful to eyes, do NOT look directly into the UV light, even through an optical instrument. In case of the light reflection, UV protective glasses are required to use in order to avoid damage by the light.
- Ensure that appropriate warning signs/labels are provided both on each of the systems/applications using the UV LEDs, in all necessary documents (e.g. specification, manual, catalogs, etc.), and on the packaging materials.
(9) Others

- This product is intended to be used for general lighting, household appliances, electronic devices (e.g. mobile communication devices); it is not designed or manufactured for use in applications that require safety critical functions (e.g. aircraft, automobiles, combustion equipment, life support systems, nuclear reactor control system, safety devices, spacecraft, submarine repeaters, traffic control equipment, trains, vessels, etc.). If the LEDs are planned to be used for these applications, unless otherwise detailed in the specification, Nichia will neither guarantee that the product is fit for that purpose nor be responsible for any resulting property damage, injuries and/or loss of life/health. This product does not comply with ISO/TS 16949 and is not intended for automotive applications.

- The customer shall not reverse engineer by disassembling or analysis of the LEDs without having prior written consent from Nichia. When defective LEDs are found, the customer shall inform Nichia directly before disassembling or analysis.

- The specifications and appearance of this product may change without notice; Nichia does not guarantee the contents of this specification. Both the customer and Nichia will agree on the official specifications of supplied products before the volume production of a program begins.