NICHIA CORPORATION SPECIFICATIONS FOR UV LED

NSHU591A
- Built-in ESD Protection Device
- RoHS Compliant
SPECIFICATIONS

(1) Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Absolute Maximum Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Current</td>
<td>I_F</td>
<td>25</td>
<td>mA</td>
</tr>
<tr>
<td>Pulse Forward Current</td>
<td>I_{FP}</td>
<td>80</td>
<td>mA</td>
</tr>
<tr>
<td>Allowable Reverse Current</td>
<td>I_R</td>
<td>85</td>
<td>mA</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_D</td>
<td>100</td>
<td>mW</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_{opr}</td>
<td>-30~85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{stg}</td>
<td>-40~100</td>
<td>°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T_J</td>
<td>100</td>
<td>°C</td>
</tr>
</tbody>
</table>

* Absolute Maximum Ratings at $T_A=25°C$.
* I_{FP} conditions with pulse width ≤10ms and duty cycle ≤10%.

(2) Initial Electrical/Optical Characteristics

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Typ</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Voltage</td>
<td>V_F</td>
<td>$I_F=20mA$</td>
<td>3.3</td>
<td>V</td>
</tr>
<tr>
<td>Radiant Flux</td>
<td>Φ_e</td>
<td>$I_F=20mA$</td>
<td>9.0</td>
<td>mW</td>
</tr>
<tr>
<td>Peak Wavelength</td>
<td>λ_p</td>
<td>$I_F=20mA$</td>
<td>375</td>
<td>nm</td>
</tr>
<tr>
<td>Spectrum Half Width</td>
<td>$\Delta \lambda$</td>
<td>$I_F=20mA$</td>
<td>9.0</td>
<td>nm</td>
</tr>
</tbody>
</table>

* Characteristics at $T_A=25°C$.
* Radiant Flux value as per CIE 127:2007 standard.
RANKS

<table>
<thead>
<tr>
<th>Item</th>
<th>Rank</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Voltage</td>
<td>-</td>
<td>2.9</td>
<td>4.0</td>
<td>V</td>
</tr>
<tr>
<td>Radiant Flux</td>
<td>8</td>
<td>9.44</td>
<td>13.32</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6.66</td>
<td>9.44</td>
<td>mW</td>
</tr>
<tr>
<td>Peak Wavelength</td>
<td>Ub</td>
<td>370</td>
<td>380</td>
<td>nm</td>
</tr>
</tbody>
</table>

* Ranking at $T_a=25°C$.
* Forward Voltage Tolerance: ±0.05V
* Radiant Flux Tolerance: ±10%
* Peak Wavelength Tolerance: ±3nm
* LEDs from the above ranks will be shipped.

The rank combination ratio per shipment will be decided by Nichia.
OUTLINE DIMENSIONS

*本製品はRoHS指令に適合しております。
This product complies with RoHS Directive.
*括弧で囲まれた寸法は参考値です。
The dimension(s) in parentheses are for reference purposes.

<table>
<thead>
<tr>
<th>項目 Item</th>
<th>内容 Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ガラス窓材質 Glass Materials</td>
<td>硬質ガラス Hard Glass</td>
</tr>
<tr>
<td>キャップ材質 Cap Materials</td>
<td>鉄合金+ニッケルメッキ Ni-plated Iron Alloy</td>
</tr>
<tr>
<td>リード材質 Lead Materials</td>
<td>鉄合金+金メッキ Au-plated Iron Alloy</td>
</tr>
<tr>
<td>質量 Weight</td>
<td>0.32g(TYP)</td>
</tr>
</tbody>
</table>

NICHIA STS-DA1-2749D <Cat.No.161031>

管理番号 No. STS-DA7-2626A

(単位 Unit: mm, 公差 Tolerance: ±0.2)
SOLDERING

- **Recommended Hand Soldering Condition**

<table>
<thead>
<tr>
<th>Temperature</th>
<th>350°C Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldering Time</td>
<td>3sec Max</td>
</tr>
<tr>
<td>Position</td>
<td>No closer than 3mm from the base of the lead.</td>
</tr>
</tbody>
</table>

- **Recommended Dip Soldering Condition**

<table>
<thead>
<tr>
<th>Pre-heat</th>
<th>120°C Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-heat Time</td>
<td>60sec Max</td>
</tr>
<tr>
<td>Solder Bath Temperature</td>
<td>260°C Max</td>
</tr>
<tr>
<td>Dipping Time</td>
<td>10sec Max</td>
</tr>
<tr>
<td>Dipping Position</td>
<td>No closer than 3mm from the base of the lead.</td>
</tr>
</tbody>
</table>

* Solder the LED no closer than 3mm from the base of the lead.
* Dip soldering/hand soldering must not be performed more than once.
* Care should be taken to avoid cooling at a rapid rate and ensure the peak temperature ramps down slowly.
* When soldering, do not apply stress to the lead frame while the LED is hot.
* When using a pick and place machine, choose an appropriate nozzle for this product.
* After soldering, the LED position must not be corrected.
* After soldering, NO mechanical shock or vibration should be applied to LED cap until the LEDs cool down to room temperature.
* In order to avoid damage on the cap during cutting and clinching the leads, it is not recommended to solder the LEDs directly on customer PCB without any gap between the cap and the board. If it is unavoidable, customer is advised to check whether such soldering will not cause wire breakage or cap damage. Direct soldering to double-sided PCBs must be avoided due to an increased effect of heat on the cap.
* When it is necessary to clamp the LEDs to prevent soldering failure, it is important to minimize the mechanical stress on the LEDs.
* Cut the LED lead frames at room temperature. Cutting the lead frames at high temperature may cause failure of the LEDs.
* Consider factors such as the dip soldering temperature, hand soldering temperature, etc. when choosing the solder.
* When flux is used, it should be a halogen free flux. Ensure that the manufacturing process is not designed in a manner where the flux will come in contact with the LEDs.
対接地防止袋
Anti-electrostatic Bag

ラベル
Label attached to the box

袋の表示
Label printed on the bag

警告ラベル
Warning and Explanatory Labels

ラベル
Label attached to the box

带電防止袋を並べて入れ、ダンボールで仕切ります。Anti-electrostatic bags are packed in cardboard boxes with corrugated partitions.

警告ラベル
Warning and Explanatory Labels

ラベル
Label attached to the box

* 本製品は带電防止袋に入れたのち、輸送の衝撃から保護するためダンボールで梱包します。Products are packed in an anti-electrostatic bag.
* 取り扱いに際して、落下させたり、強い衝撃を与えたりしますと、製品を損傷させる原因になりますので注意してください。Do not drop or expose the box to external forces as it may damage the products.
* ダンボールには防水加工がされておりませんので、積包箱が水に濡れないよう注意して下さい。Do not expose to water. The box is not water-resistant.
* 輸送、運搬に際して弊社よりの積包状態あるいは同等の積包を行って下さい。Using the original package material or equivalent in transit is recommended.

* 客先型名を*******で示します。客先型名が設定されていない場合は空白です。******* is the customer part number. If not provided, it will not be indicated on the label.
* ロット表記方法についてはロット番号の項を参照して下さい。
For details, see "LOT NUMBERING CODE" in this document.
LOT NUMBERING CODE

Lot Number is presented by using the following alphanumeric code.

YMxxxx - RRR

Y - Year

<table>
<thead>
<tr>
<th>Year</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>F</td>
</tr>
<tr>
<td>2016</td>
<td>G</td>
</tr>
<tr>
<td>2017</td>
<td>H</td>
</tr>
<tr>
<td>2018</td>
<td>I</td>
</tr>
<tr>
<td>2019</td>
<td>J</td>
</tr>
<tr>
<td>2020</td>
<td>K</td>
</tr>
</tbody>
</table>

M - Month

<table>
<thead>
<tr>
<th>Month</th>
<th>M</th>
<th>Month</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>11</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>12</td>
<td>C</td>
</tr>
</tbody>
</table>

xxxx-Nichia's Product Number
RRR-Ranking by Wavelength, Ranking by Radiant Flux
DERATING CHARACTERISTICS

 Ambient Temperature vs Allowable Forward Current

Allowable Forward Current(mA)

Ambient Temperature(°C)

(25, 25.0)

(85, 5.00)

Duty Ratio vs Allowable Forward Current

Allowable Forward Current(mA)

Duty Ratio(%)
OPTICAL CHARACTERISTICS

* 本特性は参考です。
All characteristics shown are for reference only and are not guaranteed.

発光スペクトル
Spectrum

![Spectrum Graph]

指向特性
Directivity

![Directivity Graph]

\[T_a = 25^\circ C \]
\[I_{FP} = 20mA \]

\[T_a = 25^\circ C \]
\[I_{FP} = 20mA \]
FORWARD CURRENT CHARACTERISTICS / TEMPERATURE CHARACTERISTICS

NICHIA STS-DA1-2749D <Cat.No.161031>

FORWARD CURRENT CHARACTERISTICS

FORWARD CURRENT VS. FORWARD VOLTAGE

- Temperature: $T_a = 25^\circ C$
- Forward Current (I_F) vs. Forward Voltage (V_F)

Ambient Temperature vs. Forward Voltage

- Temperature: $T_a = 25^\circ C$
- Forward Voltage (V_F) vs. Ambient Temperature (T_a)

FORWARD CURRENT VS. RELATIVE RADIANT FLUX

- Temperature: $T_a = 25^\circ C$
- Forward Current (I_F) vs. Relative Radiant Flux

Ambient Temperature vs. Relative Radiant Flux

- Temperature: $T_a = 25^\circ C$
- Relative Radiant Flux vs. Ambient Temperature

All characteristics shown are for reference only and are not guaranteed.
FORWARD CURRENT CHARACTERISTICS / TEMPERATURE CHARACTERISTICS

* 本特性は参考です。
All characteristics shown are for reference only and are not guaranteed.

順電流-ピーク波長特性
Forward Current vs Peak Wavelength

周囲温度-ピーク波長特性
Ambient Temperature vs Peak Wavelength

* 本特性は参考です。
All characteristics shown are for reference only and are not guaranteed.

TA=25°C
RELIABILITY

(1) Tests and Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Reference Standard</th>
<th>Test Conditions</th>
<th>Test Duration</th>
<th>Failure Criteria #</th>
<th>Units Failed/Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance to Soldering Heat</td>
<td>JEITA ED-4701 300 302</td>
<td>$T_{id}=260\pm5^\circ C$, 10sec, 1dip, 3mm from the base of the lead</td>
<td></td>
<td>#1</td>
<td>0/50</td>
</tr>
<tr>
<td>Solderability</td>
<td>JEITA ED-4701 303 303A</td>
<td>$T_{id}=245\pm5^\circ C$, 5sec, Lead-free Solder(Sn-3.0Ag-0.5Cu)</td>
<td></td>
<td>#2</td>
<td>0/50</td>
</tr>
<tr>
<td>Temperature Cycle</td>
<td>JEITA ED-4701 100 105</td>
<td>$-40^\circ C$(30min)\sim25$^\circ C$(5min)\sim100$^\circ C$(30min)\sim25$^\circ C$(5min)</td>
<td>100cycles</td>
<td>#1</td>
<td>0/50</td>
</tr>
<tr>
<td>Moisture Resistance (Cyclic)</td>
<td>JEITA ED-4701 200 203</td>
<td>25$^\circ C$$\sim65^\circ C$$\sim-10^\circ C$, 90%RH, 24hr per cycle</td>
<td>10cycles</td>
<td>#1</td>
<td>0/50</td>
</tr>
<tr>
<td>Terminal Bend Strength</td>
<td>JEITA ED-4701 400 401</td>
<td>5N, 0°90°0° bend, 2bending cycles</td>
<td></td>
<td>#1</td>
<td>0/50</td>
</tr>
<tr>
<td>Terminal Pull Strength</td>
<td>JEITA ED-4701 400 401</td>
<td>10N, 10\pm1sec</td>
<td></td>
<td>#1</td>
<td>0/50</td>
</tr>
<tr>
<td>High Temperature Storage</td>
<td>JEITA ED-4701 200 201</td>
<td>$T_A=100^\circ C$</td>
<td>1000hours</td>
<td>#1</td>
<td>0/50</td>
</tr>
<tr>
<td>Temperature Humidity Storage</td>
<td>JEITA ED-4701 100 103</td>
<td>$T_A=60^\circ C$, RH=90%</td>
<td>1000hours</td>
<td>#1</td>
<td>0/50</td>
</tr>
<tr>
<td>Low Temperature Storage</td>
<td>JEITA ED-4701 200 202</td>
<td>$T_A=-40^\circ C$</td>
<td>1000hours</td>
<td>#1</td>
<td>0/50</td>
</tr>
<tr>
<td>Room Temperature Operating Life</td>
<td></td>
<td>$T_A=25^\circ C$, $I_F=25mA$</td>
<td>500hours</td>
<td>#1</td>
<td>0/50</td>
</tr>
<tr>
<td>Temperature Humidity Operating Life</td>
<td></td>
<td>$60^\circ C$, RH=90%, $I_F=15mA$</td>
<td>500hours</td>
<td>#1</td>
<td>0/50</td>
</tr>
<tr>
<td>Low Temperature Operating Life</td>
<td></td>
<td>$T_A=-30^\circ C$, $I_F=20mA$</td>
<td>1000hours</td>
<td>#1</td>
<td>0/50</td>
</tr>
</tbody>
</table>

NOTES:
Measurements are performed after allowing the LEDs to return to room temperature.

(2) Failure Criteria

<table>
<thead>
<tr>
<th>Criteria #</th>
<th>Items</th>
<th>Conditions</th>
<th>Failure Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Forward Voltage(V_F)</td>
<td>$I_F=20mA$</td>
<td>$>U.S.L. \times 1.1$</td>
</tr>
<tr>
<td></td>
<td>Radiant Flux(Φ_F)</td>
<td>$I_F=20mA$</td>
<td>$<L.S.L. \times 0.7$</td>
</tr>
<tr>
<td>#2</td>
<td>Solderability</td>
<td>-</td>
<td>Less than 95% solder coverage</td>
</tr>
</tbody>
</table>

CAUTIONS

(1) Lead Forming
- When forming leads, the leads should be bent at a point at least 3mm from the base of the lead.
 Do not use the base of the leadframe as a fulcrum during lead forming.
- Lead forming should be done before soldering.
- Do not apply any bending stress to the base of the lead.
 The stress to the base may damage the LED’s characteristics or it may break the LEDs.
- When mounting the product onto a printed circuit board, the via-holes on the board should be exactly aligned with the lead pitch of the product. If the LEDs are mounted with stress at the leads, it causes deterioration of the cap and this will degrade the LEDs.

(2) Storage
- Shelf life of the products in unopened bag is 3 months (max.) at <30°C and 70% RH from the delivery date.
 If the shelf life exceeds 3 months or more, the LEDs need to be stored in a sealed container with silica gel desiccants to ensure their shelf life will not exceed 1 year.
- Nichia LED leadframe are gold plated iron alloy. This gold surface may be affected by environments which contain corrosive substances. Please avoid conditions which may cause the LED to corrode, tarnish or discolor. This corrosion or discoloration may cause difficulty during soldering operation. It is recommended that the LEDs be used as soon as possible.
- To avoid condensation, the products must not be stored in the areas where temperature and humidity fluctuate greatly.
- Do not store the LEDs in a dusty environment.
- Do not expose the LEDs to direct sunlight and/or an environment where the temperature is higher than normal room temperature.

(3) Directions for Use
- When designing a circuit, the current through each LED must not exceed the Absolute Maximum Rating.
 Operating at a constant current per LED is recommended. In case of operating at a constant voltage, Circuit B is recommended. If the LEDs are operated with constant voltage using Circuit A, the current through the LEDs may vary due to the variation in Forward Voltage characteristics of the LEDs.

(A)

(B)

- This product should be operated using forward current. Ensure that the product is not subjected to either forward or reverse voltage while it is not in use. In particular, subjecting it to continuous reverse voltage may cause migration, which may cause damage to the LED die. When used in displays that are not used for a long time, the main power supply should be switched off for safety.
- It is recommended to operate the LEDs at a current greater than 10% of the sorting current to stabilize the LED characteristics.
- Ensure that excessive voltages such as lightning surges are not applied to the LEDs.
- For outdoor use, necessary measures should be taken to prevent water, moisture and salt air damage.
- This product also emits visible light. If the LEDs are used as a light source in applications such as sensors, etc. take into consideration the emission that is in the visible light spectrum.

(4) Handling Precautions
- Do not handle the LEDs with bare hands as it will contaminate the LED surface and may affect the optical characteristics: it might cause the LED to be deformed and/or the wire to break, which will cause the LED not to illuminate. The lead could also cause an injury.
- Dropping the product may cause damage.
- Do not stack assembled PCBs together. Failure to comply can cause the cap portion of the product to be cut, chipped, delaminated and/or deformed. It may cause wire to break, leading to catastrophic failures.
(5) Design Consideration

- PCB warpage after mounting the products onto a PCB can cause the package to break.
 The LED should be placed in a way to minimize the stress on the LEDs due to PCB bow and twist.
- The position and orientation of the LEDs affect how much mechanical stress is exerted on the LEDs placed near the score lines.
 The LED should be placed in a way to minimize the stress on the LEDs due to board flexing.
- Board separation must be performed using special jigs, not using hands.

(6) Electrostatic Discharge (ESD)

- The products are sensitive to static electricity or surge voltage. ESD can damage a die and its reliability.
 When handling the products, the following measures against electrostatic discharge are strongly recommended:
 - Eliminating the charge
 - Grounded wrist strap, ESD footwear, clothes, and floors
 - Grounded workstation equipment and tools
 - ESD table/shelf mat made of conductive materials
 - Ensure that tools (e.g. soldering irons), jigs and machines that are being used are properly grounded and
 that proper grounding techniques are used in work areas. For devices/equipment that mount the LEDs,
 protection against surge voltages should also be used.
 - If tools or equipment contain insulating materials such as glass or plastic,
 the following measures against electrostatic discharge are strongly recommended:
 - Dissipating static charge with conductive materials
 - Preventing charge generation with moisture
 - Neutralizing the charge with ionizers
 - The customer is advised to check if the LEDs are damaged by ESD
 when performing the characteristics inspection of the LEDs in the application.
 Damage can be detected with a forward voltage measurement at low current (≤1mA).
 - ESD damaged LEDs may have current flow at a low voltage.
 Failure Criteria: $V_F < 2.0V$ at $I_F = 0.5mA$

(7) Thermal Management

- Proper thermal management is an important when designing products with LEDs. LED die temperature is affected
 by PCB thermal resistance and LED spacing on the board. Please design products in a way that the LED die temperature
 does not exceed the maximum Junction Temperature (T_J).
- Drive current should be determined for the surrounding ambient temperature (T_A) to dissipate the heat from the product.

(8) Cleaning

- The LEDs should not be cleaned with water, benzine, and/or thinner.
- If required, isopropyl alcohol (IPA) should be used. Other solvents may cause premature failure to the LEDs
 due to the damage to the resin portion. The effects of such solvents should be verified prior to use.
 In addition, the use of CFCs such as Freon is heavily regulated.
- When dust and/or dirt adheres to the LEDs, soak a cloth with Isopropyl alcohol (IPA), then squeeze it before wiping the LEDs.
- Ultrasonic cleaning is not recommended since it may have adverse effects on the LEDs
 depending on the ultrasonic power and how LED is assembled.
 If ultrasonic cleaning must be used, the customer is advised to make sure the LEDs will not be damaged prior to cleaning.
(9) Eye Safety

- In 2006, the International Electrical Commission (IEC) published IEC 62471:2006 Photobiological safety of lamps and lamp systems, which added LEDs in its scope.

On the other hand, the IEC 60825-1:2007 laser safety standard removed LEDs from its scope.

However, please be advised that some countries and regions have adopted standards based on the IEC laser safety standard IEC 60825-1:2011:2001, which still includes LEDs in its scope.

Most of Nichia’s LEDs can be classified as belonging into either the Exempt Group or Risk Group 1.

High-power LEDs, that emit light containing blue wavelengths, may be classified as Risk Group 2.

Please proceed with caution when viewing directly any LEDs driven at high current, or viewing LEDs with optical instruments which may greatly increase the damages to your eyes.

- Viewing a flashing light may cause eye discomfort. When incorporating the LED into your product, please be careful to avoid adverse effects on the human body caused by light stimulation.

- The products are UV light LEDs, and radiate intense UV light during operation. Since UV light can be harmful to eyes, do NOT look directly into the UV light, even through an optical instrument. In case of the light reflection, UV protective glasses are required to use in order to avoid damage by the light.

- Ensure that appropriate warning signs/labels are provided both on each of the systems/applications using the UV LEDs, in all necessary documents (e.g. specification, manual, catalogs, etc.), and on the packaging materials.

(10) Others

- This product is intended to be used for general lighting, household appliances, electronic devices (e.g. mobile communication devices); it is not designed or manufactured for use in applications that require safety critical functions (e.g. aircraft, automobiles, combustion equipment, life support systems, nuclear reactor control system, safety devices, spacecraft, submarine repeaters, traffic control equipment, trains, vessels, etc.). If the LEDs are planned to be used for these applications, unless otherwise detailed in the specification, Nichia will neither guarantee that the product is fit for that purpose nor be responsible for any resulting property damage, injuries and/or loss of life/health.

This product does not comply with ISO/TS 16949 and is not intended for automotive applications.

- The customer shall not reverse engineer by disassembling or analysis of the LEDs without having prior written consent from Nichia. When defective LEDs are found, the customer shall inform Nichia directly before disassembling or analysis.

- The specifications and appearance of this product may change without notice;

Nichia does not guarantee the contents of this specification. Both the customer and Nichia will agree on the official specifications of supplied products before the volume production of a program begins.