NSSU100CT
- Pb-free Reflow Soldering Application
- Built-in ESD Protection Device
- RoHS Compliant
SPECIFICATIONS

(1) **Absolute Maximum Ratings**

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Absolute Maximum Rating</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Current</td>
<td>I_F</td>
<td>25</td>
<td>mA</td>
</tr>
<tr>
<td>Pulse Forward Current</td>
<td>I_{FP}</td>
<td>80</td>
<td>mA</td>
</tr>
<tr>
<td>Allowable Reverse Current</td>
<td>I_R</td>
<td>85</td>
<td>mA</td>
</tr>
<tr>
<td>Power Dissipation</td>
<td>P_D</td>
<td>100</td>
<td>mW</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_{op}</td>
<td>-30~85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{st}</td>
<td>-40~100</td>
<td>°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T_J</td>
<td>100</td>
<td>°C</td>
</tr>
</tbody>
</table>

* Absolute Maximum Ratings at $T_A=25^\circ$C.
* I_{FP} conditions with pulse width ≤10ms and duty cycle ≤10%.

(2) **Initial Electrical/Optical Characteristics**

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Condition</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Voltage</td>
<td>V_F</td>
<td>$I_F=20mA$</td>
<td>3.4</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Radiant Flux</td>
<td>Φ_e</td>
<td>$I_F=20mA$</td>
<td>4.8</td>
<td>-</td>
<td>mW</td>
</tr>
<tr>
<td>Peak Wavelength</td>
<td>λ_p</td>
<td>$I_F=20mA$</td>
<td>365</td>
<td>-</td>
<td>nm</td>
</tr>
<tr>
<td>Spectrum Half Width</td>
<td>$\Delta \lambda$</td>
<td>$I_F=20mA$</td>
<td>12</td>
<td>-</td>
<td>nm</td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>$R_{\theta JS}$</td>
<td>-</td>
<td>90</td>
<td>101</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

* Characteristics at $T_A=25^\circ$C.
* Radiant Flux value as per CIE 127:2007 standard.
* $R_{\theta JS}$ is the thermal resistance from the junction to the T_S measurement point.
RANKS

<table>
<thead>
<tr>
<th>Item</th>
<th>Rank</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Voltage</td>
<td>-</td>
<td>2.9</td>
<td>4.0</td>
<td>V</td>
</tr>
<tr>
<td>Radiant Flux</td>
<td>8</td>
<td>6.8</td>
<td>9.6</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4.8</td>
<td>6.8</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>3.4</td>
<td>4.8</td>
<td>mW</td>
</tr>
<tr>
<td>Peak Wavelength</td>
<td>Ua</td>
<td>360</td>
<td>370</td>
<td>nm</td>
</tr>
</tbody>
</table>

* Ranking at $T_A=25^\circ C$.
* Forward Voltage Tolerance: ±0.05V
* Radiant Flux Tolerance: ±6%
* Peak Wavelength Tolerance: ±3nm
* LEDs from the above ranks will be shipped. The rank combination ratio per shipment will be decided by Nichia.
OUTLINE DIMENSIONS

N 本製品は RoHS 指令に適合しております。
This product complies with RoHS Directive.
N 括弧で囲まれた寸法は参考値です。
The dimension(s) in parentheses are for reference purposes.

パッケージ材料
Package Materials

封止樹脂材料
Encapsulating Resin Materials

電極材料
Electrodes Materials

質量
Weight

<table>
<thead>
<tr>
<th>項目 Item</th>
<th>内容 Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>パッケージ材料 Package Materials</td>
<td>セラミックス Ceramics</td>
</tr>
<tr>
<td>封止樹脂材料 Encapsulating Resin Materials</td>
<td>シリコン樹脂 Silicone Resin</td>
</tr>
<tr>
<td>電極材料 Electrodes Materials</td>
<td>金メッキ Au-plated</td>
</tr>
<tr>
<td>質量 Weight</td>
<td>0.020g(TYP)</td>
</tr>
</tbody>
</table>

The dimension(s) in parentheses are for reference purposes.
括弧で囲まれた寸法は参考値です。
SOLDERING

• Recommended Reflow Soldering Condition (Lead-free Solder)

1 to 5°C per sec
Pre-heat 180 to 200°C
60sec Max
Above 220°C
120sec Max

260°C Max
10sec Max

• Recommended Hand Soldering Condition

<table>
<thead>
<tr>
<th>Temperature</th>
<th>350°C Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldering Time</td>
<td>3sec Max</td>
</tr>
</tbody>
</table>

• Recommended Soldering Pad Pattern

(単位 Unit: mm)
1.5
4.4
2.2

* This LED is designed to be reflow soldered to a PCB. If dip soldered, Nichia will not guarantee its reliability.
* Reflow soldering must not be performed more than twice. Hand soldering must not be performed more than once.
* When cooling the LEDs from the peak temperature a gradual cooling slope is recommended; do not cool the LEDs rapidly.
* During reflow soldering, the heat and atmosphere in the reflow oven may cause the optical characteristics to degrade. In particular, reflow soldering performed with an air atmosphere may have a greater negative effect on the optical characteristics than if a nitrogen atmosphere is used; Nichia recommends using a nitrogen reflow atmosphere.
* This LED uses a silicone resin for the encapsulating resin; the silicone resin is soft. If pressure is applied to the silicone resin, it may cause the resin to be damaged, chipped, delaminated and/or deformed. If the resin is damaged, chipped, delaminated and/or deformed, it may cause the wire to break causing a catastrophic failure (i.e. the LED not to illuminate) and/or reliability issues (e.g. the LED to corrode, the radiant flux to decrease, the color/directivity to change, etc.). Ensure that pressure is not applied to the encapsulating resin.
* Once the LEDs have been soldered to a PCB, it should not be repaired/reworked. If it must be done, using a double-head soldering iron is strongly recommended. Ensure that sufficient verification is performed prior to use to ensure that the repair/rework has not caused the LED characteristics to deteriorate.
* When soldering, do not apply stress to the LED while the LED is hot.
* When using an automatic pick-and-place machine, choose an appropriate nozzle for this LED. Using a pick-and-place nozzle with a smaller diameter than the size of the LED’s emitting surface will cause damage to the emitting surface causing a catastrophic failure (i.e. the LED not to illuminate).
* The soldering pad pattern above is a general recommendation for LEDs to be mounted without issues; if a high degree of precision is required for the chosen application (i.e. high-density mounting), ensure that the soldering pad pattern is optimized.
* Consider factors such as the reflow soldering temperature, hand soldering temperature, etc. when choosing the solder.
* When flux is used, it should be a halogen free flux. Ensure that the manufacturing process is not designed in a manner where the flux will come in contact with the LEDs.
* Ensure that there are no issues with the type and amount of solder that is being used.
テープング部 Tape

トレーラ部/リーダ部 Trailer and Leader

リール部 Reel

* 数量は1リールにつき2500個入りです。
* JIS C 0806電子部品テープに準拠しています。
 The tape packing method complies with JIS C 0806
 (Packaging of Electronic Components on Continuous Tapes).
* 実装作業の中断などでエンボスキャリアテープをリールに巻き取る場合、
 エンボスキャリアテープを強く(10N以上)締めないで下さい。
 LEDがカバーテープに貼り付く可能性があります。
 When the tape is rewound due to work interruptions,
 no more than 10N should be applied to
 the embossed carrier tape.
 The LEDs may stick to the top cover tape.
ジルカゲルとともにリールをアルミ防湿袋に入れ、熱シールにより封をしてします。
Reels are shipped with desiccants in heat-sealed moisture-proof bags.

警告ラベル Warning and Explanatory Labels

- **LED放射**
 - LED RADIATION
 - DO NOT VIEW DIRECTLY WITH OPTICAL INSTRUMENTS
 - CLASS 3M LED PRODUCT

*製品は耐衝撃性が計られているので、落下させたり、強い衝撃を与えたりすると、製品を損傷させる原因になりますので注意して下さい。

*ロット表記方法についてはロット番号の項を参照して下さい。
For details, see "LOT NUMBERING CODE" in this document.
LOT NUMBERING CODE

Lot Number is presented by using the following alphanumeric code.

YMxxxx - RRR

Y - Year

<table>
<thead>
<tr>
<th>Year</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>H</td>
</tr>
<tr>
<td>2018</td>
<td>I</td>
</tr>
<tr>
<td>2019</td>
<td>J</td>
</tr>
<tr>
<td>2020</td>
<td>K</td>
</tr>
<tr>
<td>2021</td>
<td>L</td>
</tr>
<tr>
<td>2022</td>
<td>M</td>
</tr>
</tbody>
</table>

M - Month

<table>
<thead>
<tr>
<th>Month</th>
<th>M</th>
<th>Month</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>11</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>12</td>
<td>C</td>
</tr>
</tbody>
</table>

xxxx-Nichia's Product Number

RRR-Ranking by Wavelength, Ranking by Radiant Flux
DERATING CHARACTERISTICS

![Graph 1](image1.png)
Ambient Temperature vs Allowable Forward Current

- **R_{ja} = 500°C/W**
- **(50, 25.0)**
- **(85, 7.50)**

![Graph 2](image2.png)
Solder Temperature (Cathode Side) vs Allowable Forward Current

- **(85, 25.0)**

![Graph 3](image3.png)
Duty Ratio vs Allowable Forward Current

- **T_{a} = 25°C**

Legend:
- **Allowable Forward Current (mA)**
- **Ambient Temperature (°C)**
- **Solder Temperature (Cathode Side) (°C)**
- **Duty Ratio (%)**

NSSU100x
管理番号 No. STS-DA7-4234

8
OPTICAL CHARACTERISTICS

* 本特性は参考です。
 All characteristics shown are for reference only and are not guaranteed.

NSSU100C
管理番号 No. STS-DA7-1147A

Spectrum

Directivity

Radiation Angle

<table>
<thead>
<tr>
<th>波長 (nm)</th>
<th>相対放射強度 (Relative Radiant Intensity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>1.0</td>
</tr>
<tr>
<td>350</td>
<td>0.9</td>
</tr>
<tr>
<td>400</td>
<td>0.8</td>
</tr>
<tr>
<td>450</td>
<td>0.7</td>
</tr>
<tr>
<td>500</td>
<td>0.6</td>
</tr>
<tr>
<td>550</td>
<td>0.5</td>
</tr>
<tr>
<td>600</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Radiation Angle

<table>
<thead>
<tr>
<th>角度 (°)</th>
<th>相対放射強度 (Relative Radiant Intensity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>±10°</td>
<td>0.9</td>
</tr>
<tr>
<td>±20°</td>
<td>0.8</td>
</tr>
<tr>
<td>±30°</td>
<td>0.7</td>
</tr>
<tr>
<td>±40°</td>
<td>0.6</td>
</tr>
<tr>
<td>±50°</td>
<td>0.5</td>
</tr>
<tr>
<td>±60°</td>
<td>0.4</td>
</tr>
</tbody>
</table>

T_a=25°C
I_F=20mA
FORWARD CURRENT CHARACTERISTICS / TEMPERATURE CHARACTERISTICS

* 本特性は参考です。
All characteristics shown are for reference only and are not guaranteed.

顺電流−順電圧特性
Forward Current vs Forward Voltage

周囲温度−順電圧特性
Ambient Temperature vs Forward Voltage

顺電流−相対放射束特性
Forward Current vs Relative Radiant Flux

周囲温度−相対放射束特性
Ambient Temperature vs Relative Radiant Flux

T_a=25°C

I_{FP}=20mA

NSSU100C
STS-DA7-4225
管理番号 No.

順電流
Forward Current(mA)

順電圧
Forward Voltage(V)

相対放射束
Relative Radiant Flux(a.u.)

周囲温度
Ambient Temperature(°C)
FORWARD CURRENT CHARACTERISTICS / TEMPERATURE CHARACTERISTICS

* 本特性は参考です。
All characteristics shown are for reference only and are not guaranteed.

管理番号
No.
NSSU100C
STS-DA7-1149

順電流-ピーク波長特性
Forward Current vs Peak Wavelength

周囲温度-ピーク波長特性
Ambient Temperature vs Peak Wavelength

TA=25°C

I_{FP}=20mA
RELIABILITY

(1) Tests and Results

<table>
<thead>
<tr>
<th>Test</th>
<th>Reference Standard</th>
<th>Test Conditions</th>
<th>Test Duration</th>
<th>Failure Criteria</th>
<th>Units Failed/Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance to Soldering Heat (Reflow Soldering)</td>
<td>JEITA ED-4701 300 301</td>
<td>$T_{id}=260^\circ\text{C}, 10\text{sec}, 2\text{reflows},$ Precondition: $30^\circ\text{C}, 70%\text{RH}, 168\text{hr}$</td>
<td></td>
<td>#1</td>
<td>0/50</td>
</tr>
<tr>
<td>Solderability (Reflow Soldering)</td>
<td>JEITA ED-4701 303 303A</td>
<td>$T_{id}=245\pm5^\circ\text{C}, 5\text{sec},$ Lead-free Solder(Sn:3.0Ag:0.5Cu)</td>
<td></td>
<td>#2</td>
<td>0/50</td>
</tr>
<tr>
<td>Temperature Cycle</td>
<td>JEITA ED-4701 100 105</td>
<td>$-40^\circ\text{C}(30\text{min})\sim25^\circ\text{C}(5\text{min})\sim100^\circ\text{C}(30\text{min})\sim25^\circ\text{C}(5\text{min})$</td>
<td>100cycles</td>
<td>#1</td>
<td>0/50</td>
</tr>
<tr>
<td>Moisture Resistance (Cyclic)</td>
<td>JEITA ED-4701 200 203</td>
<td>$25^\circ\text{C}\sim65^\circ\text{C}\sim-10^\circ\text{C}, 90%\text{RH},$ 24hr per cycle</td>
<td>10cycles</td>
<td>#1</td>
<td>0/50</td>
</tr>
<tr>
<td>High Temperature Storage</td>
<td>JEITA ED-4701 200 201</td>
<td>$T_a=100^\circ\text{C}$</td>
<td>1000hours</td>
<td>#1</td>
<td>0/50</td>
</tr>
<tr>
<td>Temperature Humidity Storage</td>
<td>JEITA ED-4701 100 103</td>
<td>$T_a=60^\circ\text{C}, \text{RH}=90%$</td>
<td>1000hours</td>
<td>#1</td>
<td>0/50</td>
</tr>
<tr>
<td>Low Temperature Storage</td>
<td>JEITA ED-4701 200 202</td>
<td>$T_a=-40^\circ\text{C}$</td>
<td>1000hours</td>
<td>#1</td>
<td>0/50</td>
</tr>
<tr>
<td>Room Temperature Operating Life</td>
<td></td>
<td>$T_a=25^\circ\text{C}, I_f=25\text{mA}$</td>
<td>1000hours</td>
<td>#1</td>
<td>0/50</td>
</tr>
<tr>
<td>High Temperature Operating Life</td>
<td></td>
<td>$T_a=85^\circ\text{C}, I_f=7.5\text{mA}$</td>
<td>1000hours</td>
<td>#1</td>
<td>0/50</td>
</tr>
<tr>
<td>Temperature Humidity Operating Life</td>
<td></td>
<td>$60^\circ\text{C}, \text{RH}=90%, I_s=20\text{mA}$</td>
<td>500hours</td>
<td>#1</td>
<td>0/50</td>
</tr>
<tr>
<td>Low Temperature Operating Life</td>
<td></td>
<td>$T_a=-30^\circ\text{C}, I_s=20\text{mA}$</td>
<td>1000hours</td>
<td>#1</td>
<td>0/50</td>
</tr>
<tr>
<td>Vibration</td>
<td>JEITA ED-4701 400 403</td>
<td>200m/s$^2, 100\sim2000\sim100\text{Hz},$ 4cycles, 4min, each X, Y, Z</td>
<td>48minutes</td>
<td>#1</td>
<td>0/50</td>
</tr>
<tr>
<td>Board Bending</td>
<td>JEITA ED-4702B 003 002 3</td>
<td>1bend to a deflection of 3mm for 5±1sec</td>
<td></td>
<td>#1</td>
<td>0/50</td>
</tr>
</tbody>
</table>

NOTES:
1) $R_{\theta JA}\approx500^\circ\text{C}/\text{W}$
2) Measurements are performed after allowing the LEDs to return to room temperature.

(2) Failure Criteria

<table>
<thead>
<tr>
<th>Criteria #</th>
<th>Items</th>
<th>Conditions</th>
<th>Failure Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Forward Voltage (V_F)</td>
<td>$I_f=20\text{mA}$</td>
<td>$>U.S.L.\times1.1$</td>
</tr>
<tr>
<td></td>
<td>Radiant Flux (Φ_E)</td>
<td>$I_f=20\text{mA}$</td>
<td>$<L.S.L.\times0.7$</td>
</tr>
<tr>
<td>#2</td>
<td>Solderability</td>
<td></td>
<td>Less than 95% solder coverage</td>
</tr>
</tbody>
</table>

CAUTIONS

(1) Storage

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Before Opening</td>
<td>≤30°C</td>
<td>≤90%RH</td>
<td>Within 1 Year from Delivery Date</td>
</tr>
<tr>
<td>Storage After Opening</td>
<td>≤30°C</td>
<td>≤70%RH</td>
<td>≤168 hours</td>
</tr>
<tr>
<td>Baking</td>
<td>65±5°C</td>
<td>-</td>
<td>≥24 hours</td>
</tr>
</tbody>
</table>

- The storage/packaging requirements for this LED are comparable to JEDEC Moisture Sensitivity Level (MSL) 3 or equivalent. Nichia used IPC/JEDEC STD-020 as a reference to rate the MSL of this LED.
- This LED uses a package that could absorb moisture; if the package absorbs moisture and is exposed to heat during soldering, it may cause the moisture to vaporize and the package to expand and the resulting pressure may cause internal delamination. This may cause the optical characteristics to degrade. To minimize moisture absorption in storage/transit, moisture-proof aluminum bags are used for the LEDs with a silica gel packet to absorb any air moisture in the bag. The silica gel beads turn blue to red as they absorb moisture.
- Once the moisture-proof aluminum bag is open, ensure that the LED is soldered to a PCB within the range of the conditions above. To store any remaining unused LEDs, use a hermetically sealed container with silica gel desiccants. Nichia recommends placing them back to the original moisture-proof bag and reseal it.
- If the “After Opening” storage time has been exceeded or any pink silica gel beads are found, ensure that the LED are baked before use. Baking should only be done once.
- This LED has gold-plated electrodes. If the LEDs are exposed to a corrosive environment, it may cause the plated surface to tarnish causing issues (i.e. solderability). Ensure that when storing LEDs, a hermetically sealed container is used. Nichia recommends placing them back to the original moisture-proof bag and reseal it.
- To prevent substances/gases from affecting the plated surface, ensure that the parts/materials used with the LEDs in the same assembly/system do not contain sulfur (e.g. gasket/seal, adhesive, etc.). If the plating is contaminated, it may cause issues (e.g. electric connection failures). If a gasket/seal is used, silicone rubber gaskets/seals are recommended; ensure that this use of silicone does not result in issues (e.g. electrical connection failures) caused by low molecular weight volatile siloxane.
- To avoid condensation, the LEDs must not be stored in areas where temperature and humidity fluctuate greatly.
- Do not store the LEDs in a dusty environment.
- Do not expose the LEDs to direct sunlight and/or an environment over a long period of time where the temperature is higher than normal room temperature.
(2) Directions for Use

- The circuit must be designed to ensure that the Absolute Maximum Ratings are not exceeded for each LED. The LEDs should be operated at a constant current per LED. In the case of operating at a constant voltage, Circuit B is recommended. If Circuit A is used, it may cause the currents flowing through the LEDs to vary due to the variation in the forward voltage characteristics of the LEDs on the circuit.

![Diagram](image)

- This LED is designed to be operated at a forward current. Ensure that no voltage is applied to the LED in the forward/reverse direction while the LED is off. If the LEDs are used in an environment where reverse voltages are applied to the LED continuously, it may cause electrochemical migration to occur causing the LED to be damaged. When not in use for a long period of time, the system’s power should be turned off to ensure that there are no issues/damage.
- To stabilize the LED characteristics while in use, Nichia recommends that the LEDs are operated at currents ≥ 10% of the sorting current.
- Ensure that transient excessive voltages (e.g. lighting surge) are not applied to the LEDs.
- If the LEDs are used for outdoor applications, ensure that necessary measures are taken (e.g. protecting the LEDs from water/salt damage and high humidity).
- Although this LED is specifically designed to emit invisible light, a small amount of light in the visible region exists in the emission spectrum. Ensure that when using the LEDs for sensors, verification is performed to ensure that the emission spectrum is fit for the intended use.
- If this LED is stored and/or used constantly under high temperature and high humidity conditions, it may accelerate the deterioration of the die; this may cause the radiant flux to decrease. If the LEDs are stored and/or used under these conditions, sufficient verification must be done prior to use to ensure that there are no issues for the chosen application.

(3) Handling Precautions

- Do not handle the LEDs with bare hands:
 - this may contaminate the LED surface and have an effect on the optical characteristics,
 - this may cause the LED to deform and/or the wire to break causing a catastrophic failure (i.e. the LED not to illuminate).
- Ensure that when handling the LEDs with tweezers, excessive force is not applied to the LED. Otherwise, it may cause damage to the resin (e.g. cut, scratch, chip, crack, delamination and deformation) and the wire to break causing a catastrophic failure (i.e. the LED not to illuminate).
- Dropping may cause damage to the LED (e.g. deformation).
- Do not stack assembled PCBs together. Otherwise, it may cause damage to the resin (e.g. cut, scratch, chip, crack, delamination and deformation) and the wire to break causing a catastrophic failure (i.e. the LED not to illuminate).

(4) Design Consideration

- If the LEDs are soldered to a PCB and the PCB assembly is bent (e.g. PCB depaneling process), it may cause the LED package to break. The PCB layout should be designed to minimize the mechanical stress on the LEDs when the PCB assembly is bent/warped.
- The amount of mechanical stress exerted on the LED from depaneling may vary depending on the LED position/orientation on the PCB assembly (e.g. especially in areas near V-groove scores). The PCB layout should be designed to minimize the mechanical stress on the LEDs when the PCB is separated into individual PCB assemblies.
- To separate a PCB populated with the LEDs, use a specially designed tool. Do not break the PCB by hand.
- If an aluminum-core PCB is used to operate the LEDs, it may cause thermal stress during operation causing damage to the solder joints (e.g. crack). Ensure that sufficient verification is performed prior to use.
- Volatile organic compounds that have been released from materials present around the LEDs (e.g. housing, gasket/seal, adhesive, secondary lens, lens cover, etc.) may penetrate the LED lens and/or encapsulating resin. If the LEDs are being used in a hermetically sealed environment, these volatile compounds can discolor after being exposed to heat and/or photon energy and it may greatly reduce the LED light output and/or color shift. In this case, ventilating the environment may improve the reduction in light output and/or color shift. Perform a light-up test of the chosen application for optical evaluation to ensure that there are no issues, especially if the LEDs are planned to be used in a hermetically sealed environment.
(5) Electrostatic Discharge (ESD)

- This LED is sensitive to transient excessive voltages (e.g., ESD, lightning surge). If this excessive voltage occurs in the circuit, it may cause the LED to be damaged causing issues (e.g., the LED to have a reduction in the radiant flux or not to illuminate [i.e., catastrophic failure]).

Ensure that when handling the LEDs, necessary measures are taken to protect them from an ESD discharge. The following examples are recommended measures to eliminate the charge:

- Grounded wrist strap, ESD footwear, clothes, and floors
- Grounded workstation equipment and tools
- ESD table/shelf mat made of conductive materials

- Ensure that all necessary measures are taken to prevent the LEDs from being exposed to transient excessive voltages (e.g., ESD, lightning surge):
 - tools (e.g., soldering irons), jigs, and machines that are used are properly grounded
 - appropriate ESD materials/equipment are used in the work area
 - the system/assembly is designed to provide ESD protection for the LEDs.

- If the tool/equipment used is an insulator (e.g., glass cover, plastic, etc.), ensure that necessary measures have been taken to protect the LED from transient excessive voltages (e.g., ESD). The following examples are recommended measures to eliminate the charge:
 - Dissipating static charge with conductive materials
 - Preventing charge generation with moisture
 - Neutralizing the charge with ionizers

- To detect if an LED was damaged by transient excess voltages (i.e., an ESD event during the system’s assembly process), perform a characteristics inspection (e.g., forward voltage measurement) at low current (≤1mA).

- Failure Criteria: $V_F < 2.0V$ at $I_F = 0.5mA$

 If the LED is damaged by transient excess voltages (e.g., ESD), it will cause the Forward Voltage (V_F) to decrease.

(6) Thermal Management

- The Absolute Maximum Junction Temperature (T_J) must not be exceeded under any circumstances. The increase in the temperature of an LED while in operation may vary depending on the PCB thermal resistance and the density of LEDs on the PCB assembly. Ensure that when using the LEDs for the chosen application, heat is not concentrated in an area and properly managed in the system/assembly.

- The operating current should be determined by considering the temperature conditions surrounding the LED (i.e., T_A). Ensure that when operating the LED, proper measures are taken to dissipate the heat.

- The following two equations can be used to calculate the LED junction temperature:

 \[T_J = T_A + R_{θJA} \cdot W \]
 \[T_J = T_S + R_{θJS} \cdot W \]

 * T_J = LED Junction Temperature: °C
 * T_A = Ambient Temperature: °C
 * T_S = Soldering Temperature (Cathode Side): °C
 * $R_{θJA}$ = Thermal Resistance from Junction to Ambient: °C/W
 * $R_{θJS}$ = Thermal Resistance from Junction to T_S Measurement Point: °C/W
 * W = Input Power($I_F \times V_F$): W

\[T_S \] Measurement Point
(7) Cleaning

- Do not clean the LEDs with water, benzine and/or thinner.
- To clean the LEDs, use isopropyl alcohol (IPA). If another solvent is used, it may cause the LED package/resin to be damaged causing issues; ensure that sufficient verification is performed prior to use. Additionally, ensure that the solvent being used does not cause any other issues (e.g. CFC-based solvents are heavily regulated).
- If an LED is contaminated (e.g. dust/dirt), use a cloth soaked with isopropyl alcohol (IPA). Ensure that the cloth is firmly squeezed before wiping the LED.
- Do not clean the LEDs with an ultrasonic cleaner. If cleaning must be done, ensure that sufficient verification is performed by using a finished assembly with LEDs to determine cleaning conditions (e.g. ultrasonic power, LED position on the PCB assembly) that do not cause an issue.

(8) Eye Safety

- There may be two important international specifications that should be noted for safe use of the LEDs: IEC 62471:2006 Photobiological safety of lamps and lamp systems and IEC 60825-1:2001 (i.e. Edition 1.2) Safety of Laser Products - Part 1: Equipment Classification and Requirements. Ensure that when using the LEDs, there are no issues with the following points:
 - LEDs have been removed from the scope of IEC 60825-1 since IEC 60825-1:2007 (i.e. Edition 2.0) was published. However, depending on the country/region, there are cases where the requirements of the IEC 60825-1:2001 specifications or equivalent must be adhered to.
 - LEDs have been included in the scope of IEC 62471:2006 since the release of the specification in 2006.
 - Most Nichia LEDs will be classified as the Exempt Group or Risk Group 1 according to IEC 62471:2006. However, in the case of high-power LEDs containing blue wavelengths in the emission spectrum, there are LEDs that will be classified as Risk Group 2 depending on the characteristics (e.g. radiation flux, emission spectrum, directivity, etc.)
 - If the LED is used in a manner that produces an increased output or with an optic to collimate the light from the LED, it may cause damage to the human eye.
- If an LED is operated in a manner that emits a flashing light, it may cause health issues (e.g. visual stimuli causing eye discomfort). The system should be designed to ensure that there are no harmful effects on the human body.
- This LED emits light in the ultraviolet (UV) region. The UV light from an LED while in operation is intense and harmful; if human eyes are exposed to this light, it may cause damage to them. Do not look directly or indirectly (e.g. through an optic) at the UV light. Ensure that if there is a possibility that the UV light reflects off objects and enters the eyes, appropriate protection gear (e.g. goggles) is used to prevent the eyes from being exposed to the light.
- Ensure that appropriate warning signs/labels are provided both on each of the systems/applications using the UV LEDs, in all necessary documents (e.g. specification, manual, catalogs, etc.), and on the packaging materials.
(9) Miscellaneous

- Nichia warrants that the discrete LEDs will meet the requirements/criteria as detailed in the Reliability section within this specification. If the LEDs are used under conditions/environments deviating from or inconsistent with those described in this specification, the resulting damage and/or injuries will not be covered by this warranty.

- Nichia warrants that the discrete LEDs manufactured and/or supplied by Nichia will meet the requirements/criteria as detailed in the Reliability section within this specification; it is the customer’s responsibility to perform sufficient verification prior to use to ensure that the lifetime and other quality characteristics required for the intended use are met.

- The applicable warranty period is one year from the date that the LED is delivered. In the case of any incident that appears to be in breach of this warranty, the local Nichia sales representative should be notified to discuss instructions on how to proceed while ensuring that the LED in question is not disassembled or removed from the PCB if it has been attached to the PCB. If a breach of this warranty is proved, Nichia will provide the replacement for the non-conforming LED or an equivalent item at Nichia’s discretion. FOREGOING ARE THE EXCLUSIVE REMEDIES AVAILABLE TO THE CUSTOMER IN RESPECT OF THE BREACH OF THE WARRANTY CONTAINED HEREIN, AND IN NO EVENT SHALL NICHIA BE RESPONSIBLE FOR ANY INDIRECT, INCIDENTAL OR CONSEQUENTIAL LOSSES AND/OR EXPENSES (INCLUDING LOSS OF PROFIT) THAT MAY BE SUFFERED BY THE CUSTOMER ARISING OUT OF A BREACH OF THE WARRANTY.

- NICHIA DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

- This LED is intended to be used for general lighting, household appliances, electronic devices (e.g. mobile communication devices); it is not designed or manufactured for use in applications that require safety critical functions (e.g. aircraft, automobiles, combustion equipment, life support systems, nuclear reactor control system, safety devices, spacecraft, submarine repeaters, traffic control equipment, trains, vessels, etc.). If the LEDs are planned to be used for these applications, unless otherwise detailed in the specification, Nichia will neither guarantee that the LED is fit for that purpose nor be responsible for any resulting property damage, injuries and/or loss of life/health. This LED does not comply with ISO/TS 16949 and is not intended for automotive applications.

- The customer will not reverse engineer, disassemble or otherwise attempt to extract knowledge/design information from the LED.

- All copyrights and other intellectual property rights in this specification in any form are reserved by Nichia or the right holders who have granted Nichia permission to use the content. Without prior written permission from Nichia, no part of this specification may be reproduced in any form or by any means.

- Both the customer and Nichia will agree on the official specifications for the supplied LEDs before any programs are officially launched. Without this agreement in writing (i.e. Customer Specific Specification), changes to the content of this specification may occur without notice (e.g. changes to the foregoing specifications and appearance, discontinuation of the LEDs, etc.).