Layout design of LED

Contents

1. Objective
2. Materials and Procedures
3. LED Model
4. Measurement Results of Junction Temperature at Each Pitch
5. Conclusion
1. Objective

Multiple LEDs are generally mounted on a board for the desired light output, as panel light and illumination for facilities.

Operating a single LED generates high heat; all the more heat is generated when multiple LEDs are mounted on a board, leading to the decrease in their lifetimes. This is because the junction temperature (Tj) increases in each LED by mutual interaction.

Minimizing Tj equates to better thermal management, allowing for a longer lifetime. Therefore, LEDs must be mounted with the optimal pitch among them.

This document shows the optimal pitch between LEDs by demonstrating some configurations.

2. Materials and Procedures

First, we prepared and used the PCBs as follows (Figure 1 and 2).

![Figure 1 Circuit Board (FR-4)](image)

- Board: FR-4 (Copper foil on both surfaces)
- Board Thickness: 1.6mm
- Copper Foil Thickness: 35µm
- Reverse Side: Covered with copper foil

![Figure 2 Circuit Board (Aluminum)](image)

- Board: Aluminum (Copper foil on one surface)
- Board Thickness: 1.0mm
- Copper Foil Thickness: 35µm
- Insulating Layer Thickness: 120µm

Second, we prepared the four configurations with LEDs (3 × 3 pcs.) at different pitches; 10, 20, 30, and 40 mm.

![Figure 3 Pitch Pattern](image)
Then, the LEDs on each PCB were operated for 15 minutes. Finally, we measured T_j of the LED at the center (cf. Figure 4).

![Figure 4 LED at the Center](image)

3. LED Model

We demonstrated the configurations by using the five models below:

<table>
<thead>
<tr>
<th>NVSx(W/L)x19B</th>
<th>NSx(W/L)383</th>
<th>NF2x(W/L)757AR-V1</th>
<th>NS2x(W/L)757A-V1</th>
<th>NS2x(W/L)157AR</th>
</tr>
</thead>
</table>

4. Measurement Results of Junction Temperature at Each Pitch

4-1. NVSxx19B

Figure 5 shows the T_j measurement results at 1.0W ($I_F=350$ mA) and 2.0W ($I_F=650$ mA) with the specified pitches. When FR-4 is used, the junction temperature is less affected by the pitch at more than 20 mm at 1.0W, and at more than 30 mm at 2.0W. On the other hand, when the aluminum board is used, the junction temperature is less affected by the pitch at more than 20 mm.

![Figure 5 Junction Temperature at Each Pitch (NVSxx19B)](image)
4-2. NS9x383

Figure 6 shows the Tj measurement results at 0.6W (IF=200 mA) and 1.0W (IF=350 mA) with the specified pitches. When FR-4 is used, the junction temperature has less interaction at more than 20 mm both at 0.6 and 1.0W. On the other hand, when the aluminum board is used, the junction temperature is less affected even by the pitch at 10 mm, enabling LEDs to be mounted by the narrow pitch.

4-3. NF2x757AR-V1

Figure 7 shows the Tj measurement results at 0.6W (IF=100 mA) and 0.9W (IF=150 mA) with the specified pitches. When FR-4 is used, the junction temperature has less interaction at more than 20 mm both at 0.6 and 0.9W. On the other hand, when the aluminum board is used, the junction temperature is less affected even by the pitch at 10 mm, enabling LEDs to be mounted by the narrow pitch.
4-4. **NS2x757A-V1**

Figure 8 shows the Tj measurement results at 0.2W (I_F=65 mA) and 0.45W (I_F=150 mA) with the specified pitches. When FR-4 is used, the junction temperature has less interaction at more than 10 mm at 0.2W and at more than 20 mm at 0.45W. On the other hand, when the aluminum board is used, the junction temperature is less affected even by the pitch at 10 mm, enabling LEDs to be mounted by the narrow pitch.

4-5. **NS2x157AR**

Figure 9 shows the Tj measurement results at 0.2W (I_F=40 mA) and 0.4W (I_F=75 mA) with the specified pitches. When FR-4 is used, the junction temperature has less interaction at more than 10 mm at 0.2W and at more than 20 mm at 0.4W. On the other hand, when the aluminum board is used, the junction temperature is less affected even by the pitch at 10 mm, enabling LEDs to be mounted by the narrow pitch.
5. Conclusion

As shown in the measurement data, the optimal pitch and Tj depend on the output current (W). Therefore, the optimal pitch between LEDs needs to be designed at every output current (W). To achieve high quality performance, it is necessary to package LEDs based on the verification results of the optimal pitch and Tj.

Please use this document as reference, since the measurement data varies depending on LED model and usage conditions/environment at customer sites.